
-A125 760 LOGISTIC REGRESSION AND DISCRIMINANT 
ANALYSIS BY /

ORDINARY LEAST SQUARES(J) RAND CORP SANTA MONICA CA
G N NRGGSTROM MRR 82 RAND F -6811

UNCLASSIFIED F/O 12/1 N



-*-..TT. 
.

- -

Ll 28 25

LI-

Qii I L., 111flu 1. 111112.0

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

r.



00

LOGISTIC REGRESSION AND DISCRIMINANT ANALYSIS
BY ORDINARY LEAST SQUARES

Gus W. Haggstrom

March 1982 1

attic~d!r tm -sto

P-6811

03 1

83 03 14 18



The Rand Paper Series

Papers are issued by The Rand Corporation as a service to its professional staff.
Their purpose is to facilitate the exchange of ideas among those who share the
author's research interests; Papers are not reports prepared in fulfillment of
Rand's contracts or grants. Views expressed in a Paper are the author's own, and
are not necessarily shared by Rand or its research sponsors.

The Rand Corporation
Santa Monica, California 90406



LOGISTIC REGRESSION AND DISCRIMINANT ANALYSIS
BY ORDINARY LEAST SQUARES

Gus W. Haggstrom

March 1982

K

* lThis paper is based on research supported by Rand corporate
funds and a grant from the Department of Health and Human Services.
Views and opinions expressed in the paper are the author's own and
do not necessarily reflect those of Rand or its research sponsors.
The author wishes to thank William Lisowski of American Telephone
and Telegraph Company and Dan Relles and John Rolph of Rand for

'I| their helpful suggestions.

I
p.

b-



iT7

a

LOGISTIC REGRESSION AND DISCRIMINANT ANALYSIS
BY ORDINARY LEAST SQUARES

Gus W. Haggstrom

If the observations for fitting a polytomous logistic regression

model satisfy certain normality assumptions, the maximum likelihood

estimates of the regression coefficients are the discriminant function

estimates. This paper shows that these estimates, their unbiased

counterparts, and associated test statistics for variable selection

can be calculated using ordinary least squares regression techniques,

thereby providing a convenient procedure for performing discriminant

analysis and fitting logistic regression models in the normal case.

If the normality assumptions are violated, the discriminant function

estimates and test statistics afford readily calculated alternatives

to other procedures for fitting logistic regression models, such as

the conditional maximum likelihood estimates, that present theoretical

and computational difficulties. Empirical evidence is provided to show

that the results of fitting logistic regression models using the dis-

criminant function approach often agree closely with those obtained by

'7nditional maximum likelihood.
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1. INTRODUCTION

R. A. Fisher (1936) provided a convenient mnemonic derivation of

the linear discriminant function based on samples from two multivariate

normal distributions. He showed that a multiple of the discriminant

I function coefficient vector could be obtained by fitting a linear

equation by least squares using the components of the observation

vectors as independent variables and a dichotomous dependent variable

to separate the individuals in the two samples. Later it was shown

that the t- and F-statistics associated with this least squares pro-

cedure provide valid tests of hypotheses pertaining to the discriminant

coefficients. This paper extends these results to the case of three

or more populations atd shows how the analogous logistic regression

model in the normal case can be fitted and tested using least squares

techniques.

The logistic regression model arises in quantifying the dependence

of a polytomous (categorical) variable y on a q-dimensional vector x

of explanatory variables. Logistic regression (or "logit analysis")

is related to discriminant analysis in that the variable y may reflect

membership in one of several populations, in each of which the vector

x has a multivariate normal distribution.

To explore this relationship, we first consider the general

classification problem. Suppose that an individual is drawn at random

IA
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from a population consisting of m disjoint subpopulations I'l 2,

.... Tm, and consider the problem of classifying the individual into

one of the subpopulations on the basis of a q-dimensional vector ;E of

measurements on this individual. Let y be the random variable having

the value j for individuals in iT, and let p. = P(y = j) denote the

prior probability of drawing an individual from iT .

If the conditional density of x in Tr . with respect to some measurej

pon R q is fJ(A), the posterior probahility that the individual belongs

to Tr given X is

pUIX = P(y = iIx) = pjfj(x)/ . lAl

Among rules for classifying an individual into one of the subpopulations

Ti on the basis of x, the rule that decides y = i when p(i-t) W maxJ poJ x

maximizes the probability of correct classification (Ferguson, 1967,

p. 292). In practice, .Le density functions f (x) and the prior proba-

bilities pj are usually unknown, and statistical models are often

posited in which the conditional probabilities are expressed as simple

functions of parameters that can be estimated from a training set of

n observations (S, yi) , i = 1, 2, ..., n.

A logistic regression model for the pair (x, y) is characterized

by the condition that the probabilities p(j ix) are expressible in the

form

p(jiIx) = exp(y. + 6.'x)/=I' exp(yk + 'x) (1.2)

for some set of parameters y. and . (8., ...,. )'. In the dichoto-
m -cf  i jq

mous case (m = 2), this reduces to the binary logistic form

L
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p(l Ix = /[l + e"(a +  , (1.3)

if one sets a = - and A_2

The parameters yj and 5. in (1.2) are not uniquely determined,

because the probabilities p(jIx) remain unchanged if one multiplies

the numerator and denominator in (1.2) by exp(a + k'X) for any a and

)I. One way to specify the parameters uniquely is to incorporate side

conditions, such as E Yk = 0 and E 6 = 0, or -y = 0 and 8 = 0.
mf -M

Alternatively, one can specify these parameters as functions of other

parameters that index the joint distribution of x and y. The latter

method will be used in treating the normal case below.

It follows from (1.1) that the pair (x, y) satisfies a logistic

regression model whenever log[f.(xj)/fm(x)] is a linear function in x

for j = 1, 2, ..., m - 1. In particular, this holds if the conditional

densities belong to an exponential family

fj(2s = C(O.) h(x) exp(G.'x) (1.4)

where 1e is a q-dimensional vector of parameters. Day and Kerridge (1967)

provided a slightly different specification by adopting densities of the

form

fj(x) = cj exp[-(x - )'E-l (x - p.)/21 cp(x) (1.5)

for some q-dimensional vector and some nonsingular qxq covariance

matrix E. This can be written in the form (1.4) with e. = Z-I

The normal case that gives rise to a logistic regression model is

the case in which x has a multivariate normal distribution Nq(1i, E.)q k.J J
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and the covariance matrices satisfy E .. = E E. Here, the

density of x in Tr. is

f (x) = ( q121g1" 12 exp[-(x - )j)'tE (x- j)/21 • (1.6)

It follows from (1.1) that the conditional probabilities p(jjx) satisfy

a logistic regression model (1.2) with the parameters equal to the

discriminant function coefficients

j -log pij I - 1j'1 2

In the dichotomous case, the parameters of the binary logistic model

(1.3) are given by

(1.8)

a log(pl/p2) - + )/2

In treating the estimation of the parameters in (1.7) and (1.8),

we assume there is a training set of n independent observations

(2s, Yd, i = 1, 2, ..., n, such that for any pair (,. y) the distribution

of x given y = j is Nq( ,1'E). Let n. be the number of observations for

V' which yi = j. Two cases will be considered:

Case I: The variables yi are random with P(yi = J) = P J"

Case II: The variables y, are constants, i.e., the observations

arise from separate samples of fixed sizes nI , ..., n from populations

'' m

In Case I, the maximum likelihood estimators (MLEs) of the parameters

pj, j, and Z are the values that maximize the likelihood function
=n m m n nL n n [pf )] f ( p IT [f (xi)] j, (1.9)

i= j=l J  j=l j i=l J '

i,
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where v =1 if Yi and Vji = 0 otherwise. The likelihood function

for Case II is the same except that the factors involving p. are missing.

In either case, the MLEs of the parameters yj and 6 are the discriminant

function estimators obtained by substituting the MLEs . and S in (1.7).

By well-known results for Case II (e.g., Anderson, 1958, p. 248), the

MLE of kj is the sample mean vectorA

x. = Z vjix./n j  (1.10)

and the MLE of Z is E = A/n, where A is the pooled sum of squares and

cross products matrix
n m

A = ES S Vj(x - X.)~ - Pt. (1.11)
il j1 Afi 1

If the values of p1 are unknown in Case I, the MLE of p. is 
i n./.

In Case II, we shall assume the p 's are known.

Thus, the HLEs of the parameters in (1.7) are

AaA_ 1 -

y.= log p. x ' /2.
.aJ ~~ L Li- '-3

In the dichotomous case (1.8), the MLEs are

i ' ffi Z=I I "x2)(1.13)

= log p + x2)/2.

While a number of statistical packages exist for calculating the

discriminant function estimates directly, few provide test statistics

for performing variable selection, and they often lack the versatility

for making transformations, deleting variables (or cases), plotting,

and treating missing values that linear model practitioners are accus-

tomed to. We now show how these estimates, their unbiased counterparts,

and associated test statistics can be calculated by applying least squares

procedures to linear models.
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2. THE DICHOTOMUS CASE

For the case m 2, we redefine the variables y, to have values

1 and 0, instead of 1 and 2, and let = (Y' y2  . Yn) ' denote

the vector of dummy variables indicating membership in r" Let a and

b denote the "intermediate least squares" (ILS) estimates that result

from treating the observations (x, yi) as if they satisfied a linear

model

Ya = C + P + ei fo(2.1)

and let SS denote the residual sum of squares from this regression:
e

n~~~~SS =  (Y i " . 2  • 2 2

e i 1

Theorem 1. The MLEs of the logistic regression coefficients in

(1.8) are related to the ILS estimates a and by

Kb,
-l -l(2.3)= log(p/p 2 ) + n(n n 2")/2

where K = n/SS. e

Before proceeding with the proof, we first note that, since

1 p2 = n1/n2 = y(l - y) in Case I, these estimates can be readily

calculated by hand from just the values of a, b, n, SSe, and y. Also,

as will be seen below, the standard errors and t-statistics for the

logistic regression coefficients k are readily obtained from those

associated with the ILS estimates.

In Fisher's original mnemonic procedure for deriving an unspecified

multiple of the discriminant function coefficients, he used a dichotomous
I
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dependent variable u having the values n2/n and - ni/n instead of 1

and 0. Since the values u. are the centered values yi - y, the values

of b and SS are the same for both choices. Previous writers (Warner,

1961; Lachenbruch, 1975, p. 26) have derived formulas for the factor K

in (2.3) that are not as readily calculated, given the value of SSe

g To prove Theorem 1, we follow Fisher (1938) and observe that b

satisfies the normal equations

Z'Zb = Z'u (2.4)

where Z is the nxq matrix of centered values of the x ij's. These

equations can be rewritten in the form

(A + cdd')b = cd , (2.5)

where d =x- ,c f n n 2/n, and A fti is the pooled sum of squares

and cross products matrix. Thus, Ab = c(l - b'd)d, implying that

b = c(l - b'd)A 1d = /K (2.6)

where

K = n/c(l - b'd) (2.7)

Since the sum of squares due to regression is

SS(reg) = b'Z'u = cb'd (2.8)

and the total sum of squares about the mean is

SS(tot) = nl - /n)2 + n2 (-n1/n)
2 - c (2.9)

4 the residual sum of squares is

SS = c(l - b'd) = n/K . (2.10)

Hence, from (2.6) and (2.10), Kb where K = n/SS e
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To show that & in (1.12) can be written in the form (2.2), it

suffices to show that

0'(x + x2)/2 = K(a - 1/2) + n(n - n2 )/2 (2.11)

or

b(x I + x2) - 2a + I - SS e(nl' - n2 "l) (2.12)

Let xjk' k = 1, ... , n., denote the x vectors for the nj observations

from T, and let yjk denote the fitted value corresponding to x jk Then

b'x. = E b'xk/n = E (y - a)/n. = -a + E y/n . (2.13)X-j k j jkj

Also,

E ylk ',Y Y.- 7 ")'=n I  -y n '1 -(- iyn (- SSe (2.14)

and

Y Y2k = y Y " Ylk = n, - (n1 - SSe) SSe (2.15)

The result follows from substituting (2.13)-(2.15) in the left member of

(2.12),, completing the proof of Theorem 1.

It is well-known that the F-statistic for testing the hypothesis

H: - 0 (or, equivalently, , = .), calculated as though the linear

model (2.1) applied with normally distributed errors ei N(O, a 2), is

a multiple of Hotelling's two-sample T2 statistic

= cd'S-d = cD 2 (2.16)

where S = A/(n - 2) is the usual unbiased estimator of 2 and D is

Mahalanobis' D2 statistic (Fisher, 1938). From (2.6)-(2.8), we see that

SS(reg) = cb'd = cnd'A'Id/K = CD 2( S S )/(n - 2). (2.17)
q e

Hence, the F-statistic is

F (n - q - l)SS(reg)/q(SS e (n - q - l)T 2/q(n - 2). (2.18)
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Under the assumption that the observation vectors are sampled

from two multivariate normal distributions N (p j= 1, 2, it

follows that F - F(q, n - q - 1) under H (Anderson, 1958, p. 109).

Lehmann (1959) showed that this test is the uniformly most powerful

(UHF) invariant test of H.

To test H1 : p+l = f  = 0, one can follow the linear

model paradigm to calculate an F-statistic F comparing SS with the
1 e

residual sum of squares SS, calculated after omitting the last q - p

components of ; as independent variables. Since it follows from

(2.17) that

SS = C/(l + CD 2) (2.19)
e q

where C = c/(n - 2), we see that

F1  k(SS I /SSe 1) = kC(D 2)/(1 + CD 2) (2.20)

where k = (n - q - l)/(q - p). Rao (1946, 1948) derived FI as the

likelihood ratio test statistic for testing H1 in the two-sample

multivariate normal case and showed that F - F(q - p, n - q - I)

under HI . Gir (1964) proved that Rao's test is the UHP invariant

similar test of H1. These results are summarized in the following

theorem.

Theorem 2. The F-statiscics (2.18) and (2.20) derived from

the linear model paradigm provide valid tests of H: B = 0 and

H1 : Op+l ... = 0 = 0.

To extend the linear model paradigm further, we define the

standard error of $k and the t-statistic tk for testing H2: Bk = 0

by
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s.e.(k) = K[s.e.(bk)] (

tk = k/s.e.(Ok) = bk/s.e.(bk)(

where s.e.(bk) is the standard error of bk calculated from fitting

the yi's to the 's by OLS. Then it follows from specializing Rao's

result to the case p = q - 1 that tk provides a valid test of H2 in

the sense that tk2 _ F(l, n - q - 1). This suggests, but does not

prove, that tk has a t distribution under H While this result will

be proved below, it is not true that (O - sk)/s.e.(O) has a t distri-

bution when Ok 0. The problems of providing unbiased estimators and

confidence intervals for will be treated later.
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3. THE POLYTOMUS CASE

The development above for the dichotomous case provides little

insight as to why following the linear model paradigm might lead to

valid tests and estimates for the logistic regression model. To further

illuminate the dichotomous case and provide a basis for establishing

analogous results for the polytomous case, we begin by considering how

the parameters of the logistic regression model are related to certain

regression coefficients whose MLEs are least-squares estimators.

In the logistic regression model given by (1.2), the conditional

probabilities p(j x) are specified in terms of parameters -y and 6.

that are functions of p , and £. A second parameterization that is

more convenient for this development results from dividing the numerator

and denominator of (1.2) by exp(y M + 6M 'x) and setting 01 Y Y. " m

and J," = 8. - 8 . This yields the parameterizationj --n

p(jlx) = exp(a. + C .'x)/[l + _' exp(k + x

for j = 1, 2, .... m-1; (3.1)

4 p(m) = I - e1 p(jIX).

It follows from (1.7) that

S(3.2)
aj = log(p/P M) - tj'(yj + 4m)/2.

Letting the (i,j) elements of Z and Z1 be denoted by aij and ij in

the sequel, we recall that, if x - Nq(j,- Z), then the conditional distribution

of xk , given the other components of x, is N(jk + I/a k ) where 9

j k + ;-
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• = = - a~~ki/ kk fri k n
is a q-dimensional vector with k = 0, a,

kk kr

jk = jk " k~e P (See Anderson, 1958, pp. 28, 42.) The "constant terms"

Sjk' k = 1, 2, ..., q, are related to the components of the logistic

regression coefficient vectors 8. = - , since the kth component of 6. is

aj = k i  akk 61 kk(3)
ik ji jk ;k

Hence, the components of . are given by

Sff o akk - tmk) (3.4)" B~jk j

Let Vl, v2, ..., V denote the indicator variables for the subpopula-

tions i, T' Then it follows from the above that the components

x k of the observation vectors x satisfy the linear model

x v +e0'x +e
k j=1 jk j -k'- k (3.5)

Ix ++ ;)
k k +  k =1 jk "mk)j k

where ek - N(O, 1/ k k )  By relabeling vi, ...9 vm as xq+19 ...,9 xq

this can be rewritten in the form

Ikk ~k 81= X + +ek (3.6)
xk = tm + 9- ~ ~ x+j k

where

8k,q+j = §jk " mk f jk/kk" (3.7)

By reexpressing each of the joint densities f.(x) in the likelihood

function (1.9) as a product of the conditional density of xk times the

joint density of the other components of x, we see that the MLEs of the

regression coefficients in (3.6) are the least-squares estimators, and

the MLE of the conditional variance 1/0kk is the residual sum of squares

SS(xk) divided by n. As is well known (e.g., Rao, 1965, p. 224), these

estimators can be obtained by inverting the augmented sample covariance
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matrix S with elements

a S (xi - x )(x. x.)/n (3.8)
j iv i iv j

for i, j 1 1, 2, ... , q + m - I. The MLEs are given in terms of the

elements sij of S"I by
A kj kk

kj (9
Akk kk (3.9)
a = s = n/SS(xk).

Hence, by (3.7)

A A kk k,q+j (.0
~. =e3.1=)jk k,q+j k

for j = 1, 2, ..., m-l. Noting that the last member of (3.10) can also be

obtained by using xq+j (= vj) as the regressand, we obtain that
8jk~ j,k. q+jq+j=

s q+' = b k(n/SSj) (3.11)

where bjk = Bq+j,k is the regression coefficient on xk when v. is regressed

linearly on xl, ... , xq and the other vk's, and SS is the residual sum of

squares.

This development indicates that the linear model paradigm for the

dichotomous case can be extended to the polytomous case. The procedure

consists of first fitting the observations (x, vii , ... , vm l'i)

* by least squares as if they satisfied the linear model

vji + t.Y + ji (3.12)

for each j. This provides ILS estimates a. and b. of 0. and Q., as well

as the residual sum of squares SS, which can then be transformed to yield

the MLEs. The process can be summarized as follows:

... . . ... . . ...I. .. . . • . . ..
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Theorem 3. The MLEs of the polytomous logistic regression coefficients

(3.2) are related to the ILS estimates aj and b. by

.=K. b,Affj i j b,(3.13)

1= log(pj/P ) + K (aj - 1/2) + n(n -"l)/2

where K. = n/SS.

The formula for i is a restatement of (3.11). The derivation of the

formula for &. is similar to the proof for the dichotomous case. Seej

(2.11) tu (2.15).

As in the dichotomous case, these formulas for the MLEs apply whether

(1) the individuals are sampled at random from the population consisting

of m subpopulations '11 "'., rm, or (2) the observations arise from separate

samples of fixed sizes nl, ... , nm from Tj, ... , n . In the first case,

the MLEs of the p., s are pj n /n; in the second, the p 's are assumed to

be known.

Next we consider whether the t-statistics derived from the linear model

paradigm provide valid tests of the hypotheses H: 5jk = 0. Since $jk =

a ekq+j by (3.7), H is equivalent to the hypothesis that Ok,q+j = 0

in (3.6). Under the Case II (separate sample) assumptions, the UMP unbiased

test of H is based on the t-statistic

t = ak,q+j/s.e.(ek,q+j) (3.14)

which has a t(n -m-q+l). distribution under H. The analogous t-statistic

when v. is regressed linearly on x., x2, ... , x and the other Vk'S isJ q

t = bjk/s.e.(bJk) , (3.15)

where the standard error in the denominator is calculated as if (3.12)
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applied with the error terms satisfying the usual linear model assump-

tions. To see that these two t-statistics are identical, it suffices

to recall that both can be calculated from the sample partial correlation

coefficient rjk.c between v and xk using the formula

2 1/2t = rjkc (V/(l - rjk"c (3.16)

where v = n - m - q + 1.

In concluding that the t-statistic (3.15) has the same properties

as those cited for the one in (3.14), one must recognize that these

properties depend on the Case II assumptions. In Case I, the conclusions

need qualification, because the n 's are random variables that can be

zero with positive probability. While these results and others to follow

can be restated as conditional results given any nonzero values of the

n 's for which n > m + q - 1, we shall simply assume that the Case II

assumptions apply with fixed nonzero sample sizes nj. With this proviso,

the validity of the t-statistic (3.15) can be stated as follows:

Theorem 4. The t-statistic (3.15) for testing H: jk = 0 derived

from fitting (3.12) by ordinary least squares has a t(v) distribution

under H, and rejecting H for Itl > t Ia/2 (v) provides the LTMP unbiased

test of size 0.
|A

If we define the standard error of using|%['jk
)  j[ (jk)

s.e.(Ok K = s.e. (3.17)

then t = %k/s.e.($jk) provides a valid t-statistic for testing whether

[jk = 0. However, it is not the case that ( -jk "jk)/s.e'(%jk) has a
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Student's t distribution except when %jk = 0. The problem of providing

an approximate pivotal quantity for jk will be treated below after

considering the bias of the HLEs.

By (1.12), alternative formulas for and are given byij-- -

;.:l - M (3.18)

a = lg(p./pm) " (Qj Qm)/2

where Q= xj'Exj. Das Gupta (1968) examined the moments and asymptotic

distribution of the discriminant function coefficients 0 in the dichotomous

case. A key result in his derivation is that, if A has a Wishart distri-

bution W (E, N), then E(A":) = E-I/(N - q - 1). Applying this result

to f. and observing that the matrix A nE in (1.11) has a Wq (, n - m)

distribution and is independent of the mean vectors, we see that E(QJ) =

nj /(v - 2). Hence, an unbiased estimator of kj is

Pj= (v - 2)pj/n=Cjb~ (3.19)

where Cj = (n - m - q - l)SS.

To remove the bias in ct, first note that

E(Q) E(E(x 1^1 x x] E X4  .)/v-2
i S S I Fj~ = E(3F'E--,)(v 2)(3.20)

= n[(q/n) + Ej' . j]/(v - 2)

It follows that an unbiased estimator of a is

= log(pj/P m ) - [(v - 2)(Q - Qm)/n - q(nj - n1)]/2. (3.21)

By (3.13), this can also be written in the form

S lgp/ +C(.- 2+n--)n - nm)
= aj - 1/2) + (n - m - )(nJ - )/2. (3.22)

The unbiased estimators in (3.19) and (3.22) are functions of the

sample mean vectors Sj and the pooled sample covariance matrix , which
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are sufficient statistics under the Case II assumptions. Moreover,

(Xl' "'", xm is complete, as can be shown by a proof analogous to

that given in the one-sample case (Anderson, 1958, p. 117). It follows

from the Lehmann-Scheffe Theorem that a and satisfy the following

optimality property.

Theorem 5. The estimators aY and given in (3.22) and (3.19)

are the uniformly minimum variance unbiased estimators of CY and P.

If one defines the standard error of 0 k using

e.e.(Ojk) = C [s.5 ( jk) (3.23)

then t = 0jk/s.e,(Ojk) has a t(v) distribution when jk= 0 by Theorem 4.

Although the pivotal quantity

t = (jk - Ojk)/se.(Ojk) (3.24)

only has a t(v) distribution when 0 0, it can still be used as an

approximate pivotal quantity for generating confidence intervals. This

quantity is closely related to a bona fide pivotal quantity having a

t(v) distribution suggested by the model (3.6), namely,

t k,q+j " 6k,q+j )/s'e'(k,q+j) . (3.25)

By (3.7), (3.10), (3.14), and (3.15), this can be rewritten in the form

t = ( /ak k - ljk/k)/(Kj/skk)s.e.(bjk)Ojk j i jk(3.26)

= (Go - jk)/G[s.e.(8Ojk)1

where G = na kk/vskk SS(a)/v(/kk). Noting that SS(xk)/v is the

kkusual unbiased estimator of 1a (the conditional variance of xk given

the other components of 20, we see that E(G) = 1 and Var(G) = 2/v. Hence,

for moderately large values of v, omitting the factors G in (3.26) and

using (3.24) instead should provide good approximations.

K"
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4. MATRIX FORMULATION

Let the augmented sample covariance matrix S= (sj) defined in

(3.8) be partitioned into

(4.1)Z1(1 4)
where is the sample covariance matrix of x1 , ..., Xq, and 2 is

the sample covariance matrix of vl, ..., Vm.l* Then

S .1 / l.2 
"  "4 1.2 -1222

S .1 22211.2 (4.2)

where

A11.2 2- 4-1 - -l2 .22 l.l(3
1 2 1 1 1 " S1 2 2 1 1 (4 .3 )

S 122 + l2 -SII.2 S-22

The submatrices of S in (4.2) have interesting interpretations

in discriminant analysis and logistic regression. By (3.10), the ele-

ments in the upper right-hand corner are the negatives of the discriminant

coefficient estimates jk" This might have been deduced from (4.2) and-l

(3.18) by recognizing that S12S£2  is the matrix of least-squares re-

gression coefficients of the components of x on vi, ..., V- 1 , and Sll.2

is the residual sum of squares and cross-products matrix (Anderson, 1958,

p. 81). Since the relevant regression equations are of the form (3.5)

except that the term x is miasing, it follows that the columns of

Sl2S22 are the vectors xj - mq j f 1, 2, ... , m - 1, and 11.2 f "
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Hence, if B is defined to be the qx(m - 1) matrix having as

its j th column, then it follows that

S =1 (4.4)-B S2

By (3.9) and (3.13), the diagonal elements of S22 are the multiples

Ki = n/SSj used in converting the IS estimates to the MLEs.

Clearly, the estimates jk and their test statistics can be

calculated directly from S . Following the linear model paradigm is

simply a mnemonic technique for adopting standard least-squares pro-

cedures to isolate the appropriate elements of S -l
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5. EFFICIENCY AND ROBUSTNESS

Logistic regression is often applied in situations in which the

normality assumptions are known to be violated, e.g., in cases in which

one or more of the independent variables are dichotomous. Several

authors (e.g., Press and Wilson, 1978) have recommended against the

use of the discriminant function estimators & and Aj except in those

rare instances when the normality assumptions apply.

A commonly recommended alternative to the discriminant function

estimators when the normality assumptions do not apply are the condi-

tional maximum likelihood estimators (CMLEs). These estimators are

defined as the values of ae and that maximize the conditional like-
j A

lihood function
m n. v

L i ' [p(j 1)]v l j , (5.1)
j=l i=l

where p(jjix) = P(y jix) is given by (3.1) in the polytomous case and

(1.3) in the dichotomous case. Of course, the CMLEs are the maximum

likelihood estimators if the xi's are constant vectors or if the marginal

distributions of the xi's do not depend on I and %, but even in these
cases the rationale for adopting the CMLEs in practice is unclear.

Under the normality assumptions imposed in the preceding sections,

one would expect that the discriminant estimators, being the unconditionalI
MLEs, would perform at least as well as the CMLEs in large samples.

Efron (1975) confirmed this in the dichotomous case and showed that the

.... .. 0
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asymptotic efficiency of the CMLEs decreases markedly as the Mahalanobis

distance between the mean vectors 4 and i increases.

Despite this lack of efficiency in the normal case, it is often

contended that the CMLEs are preferable because they are more robust

in the nonnormal case. In any case, the CMLEs raise thorny computational

and theoretical problems, and there may be some difficulty in determining

whether the CMLEs exist for a given sample in the polytomous case. In

the dichotomous case, the CMLEs do not exist if there is some linear

combination d'x such that the values d'x for those individuals having

Y = 1 are all larger (or smaller) than the corresponding values of

those individuals for which y1 = 0. If the CMLEs exist, they are often

calculated using an iterative procedure, such as the method introduced by

Walker and Duncan (1967), that may require a number of passes through

the data. Test statistics associated with the CMLEs are based on asymp-

totic properties of MLEs that are of questionable validity in small samples.

While the t-statistics associated with the discriminant function

estimators provide exact tests when the normality assumptions apply,

* the robustness of these statistics is open to question when the normality

assumptions are violated. To provide some evidence on this score, con-

sider the case in which there is just a single independent variable x in

the dichotomous logistic model. It follows from the identification of

the t-statistics (3.14) and (3.15) that the statistic t = /s.e.(;)

associated with the coefficient $ on x is the ordinary two-sample t-statistic

t = (X1 - x2)/1S2(n 1 l + n2
"1)]1/2 (5.2)
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As is well known, two-sided tests and confidence intervals based on

this statistic are quite robust to departures from normality, even

when the x i's are dichotomous.

A case that would seem to favor the CMLEs is the case in which the

?'s are constant vectors. Berkson (1955) made a thorough study of the

performance of the CMLEs (here, MLEs) in bio-assay situations where the

xiis are preassigned dosage levels. He showed that his minimum logit

chi-square estimators and the minimum chi-square estimators perform

considerably better than the MLEs in applications of this type, even

if one excludes the cases in which the MLEs fail to exist. The poor

performance of the CMLEs in this case as well as the normal case raises

questions about the widespread use of the CMLEs in practice.

This is not to say that the discriminant function estimators would

perform any better in bio-assay situations. Halperin, Blackwelder, and

Verter (1971) provide compelling arguments to effectively eliminate the

discriminant function estimators as contenders in applications in which

the independent variables are dichotomous. However, in cases like these,

the data lend themselves to grouping, so that one can use the readily

calculated minimum logit chi-square estimators. The procedure involves

first transforming the group means using Berkson's logit transformation

or a modified version recommended by Anscombe (1956) and then fitting

the transformed values using weighted least squares. For an excellent

discussion of these methods, see Cox (1970).
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. In applications where some or all of the independent variables

-" .are continuous, the discriminant function estimators merit wider use

both in exploratory work associated with fitting logistic regression

models and as alternatives to (as well as first approximations for)

the CMLEs. The main reason for these recommendations stems from an

g empirical observation--the two methods ordinarily yield comparable

results in practice. Both sets of estimates, their standard errors,

and their t-statistics have been calculated for numerous data sets

*I emanating from research studies at The Rand Corporation since 1974

when the formulas (2.3) for the dichotomous case were first derived

(Haggstrom, 1974). Almost without exception, the results from applying

the two procedures have been interchangeable for most practical purposes

in that corresponding pairs of estimates typically differ by less than

a standard error (no matter which standard error is used), and the

t-statistics for the two procedures are usually quite close.

In their excellent paper comparing the two estimation techniques,

Halperin et al. reported the results of using both procedures in fitting

* several data sets that included both continuous and discrete independent

variables. For the most part, their results confirmed the close agreement

of the estimation procedures, although they reported slightly better fits

4 using the CMLEs. They found that the absolute values of the t-statistics

associated with the CMLEs tended to be slightly smaller than those for

the discriminant function estimates, but this may have resulted from

their using a different t-statistic from the one defined in (2.21).
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The observation that the two estimation procedures tend to yield

comparable results (even in cases where the appropriateness of the

logistic regression model is suspect) indicates that, whatever robust-

ness properties the estimators have to nonnormality and misspecifications

of the regression functions, the procedures seem to share those properties

in situations where the CMLEs exist and some of the independent variables

are continuous. Since neither procedure has been shown to have a decided

advantage based on theoretical grounds (except perhaps in the normal

case), it seems only reasonable to opt for the computational facility

of the discriminant function estimators, especially in exploratory work

with large data sets.

Another consideration that favors the use of the discriminant

function estimators in some applications is that, unlike the CMLEs,

they are readily adapted to handling missing values. As was seen in

Section 4, the discriminant function estimates can be calculated directly

from the augmented sample covariance matrix. In the missing values

case, one can mimic a common procedure for handling missing values in

linear models by simply substituting estimates of the elements s
I

using observations on complete pairs. Alternative procedures and soft-

ware for carrying out this process is provided in BMDP-79 (Dixon and

Brown, 1979, Chapter 12). Chow (1979) discusses this and other tech-

niques for treating the missing value problem in logistic regression.



-26-

6. A NUMERICAL EXAMPLE

As an example to illustrate how a polytomous logistic regression

model can be fitted by ordinary least squares, we report an analysis

of 300 observations on participants in the National Longitudinal Study

of the High School Class of 1972. The scores x1 and x2 are the seniors'

Scholastic Aptitude Test scores (verbal and quantitative) divided by

100, and v, v2, and v3 are indicator variables for three categories

of postsecondary activities: (1) College attendance, (2) military

service, and (3) other. Some summary statistics for comparing the

three groups are given in Table 1.

Table 1

SUMMARY STATISTICS

Means Std. dvn.

Groups n xI  x2  xI  x2  r(x ,x2 )

1 169 4.79 5.29 1.14 1.17 0.69

2 20 4.30 4.61 0.94 0.96 0.52

3 ill 4.20 4.69 0.96 1.07 0.56

Combined 300 4.54 5.02 1.10 1.15 0.66

The equations below were fitted to the observations by ordinary

least squares:

v I = - 1.0023 + .0719x + .0551x2 - .5610v_

(2.23) (1.79) (-5.27)

' 2 = .1525 + .0131x1 - .0118x" - .1531v 1
4(0.77) (-0.73) (-5.27)
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The quantities in parentheses beneath the IIS estimates are the t-statistics

t = bjk/s.e. (bik). The multipliers for transforming the ILS estimates

to the MLEs of the logistic regression coefficients (3.2) are K=

n/SS I = 300/61.96 = 4.842 and K2 = n/SS 2 = 300/16.91 = 17.74. The

values of the discriminant function estimates determined from (3.13)

are reported in Table 2, along with the corresponding values of the

CMLEs calculated from the same data set.

Table 2

ESTIMATES OF THE LOGISTIC REGRESSION COEFFICIENTS

Discriminant Cond. maximum
function estimates likelihood

Coeff. s.e. t Coeff. s.e. t

Group 1 (College)

Constant -2.476 -2.491

x .348 .156 2.23 .352 .157 2.24

.267 .149 1.79 .268 .148 1.81x2

Group 2 (Military)

Constant -1.731 -1.747

x .232 .300 .77 .235 .302 .78

x2  -.209 .286 -.73 -.207 .286 -.72

In this particular case, the agreement between the discriminant

function estimates and the CMLEs was remarkably close. While good agree-

ment between the two sets of estimates and their t-statistics is expected,

this level of agreement is unusual.

IL
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To illustrate that the discriminant function estimates and their

t-statistics can be determined directly from the augmented sample

covariance matrix S for xI , x2, vl, and v2, the matrix and its inverse

are given below;

1.2029 .8388 .1415 -.01581

.8388 1.3298 .1489 -.0275

-.1415 .1489 .2460 -.0376

L -.0158 -.0275 -.0376 .06221

1.5093 -.9179 -.3482 -.2324
.9179 1.3652 -.2665 .2089

-.3482 -.2665 4.8417 2.7168

-.2324 .2089 2.7168 17.7453

The negatives of the discriminant function estimates appear in

the upper right-hand corner of S"1, and the values of Kj = n/SS are

the last two diagonal elements. The t-statistics for the discriminant

function estimates can be determined by first calculating the partial

= j -j kk 1/2
correlation coefficients r f i k/[IsJ 5 s and then applying

jk.c

formula (3.16).

* The t-statistics in Table 2 associated with 821 and 822 can be

used to test the hypotheses that 621 = 0 and 022 0. Alternatively,

2
Hotelling's T could be used to test the hypothesis that 42 m =3"

* Given that these hypotheses are accepted, one might choose to combine

Groups 2 and 3, thereby reducing the polytomous case to the dichotomous

case. The requisite calculations for fitting the dichotomous model

* can be performed directly by inverting the appropriate 3x3 submatrix of S.

I
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